
On-demand processing architecture for radar image products

Markus Peura∗

Finnish Meteorological Institute, Development of Services

Abstract

In this paper, we present an open, light-weight produc-

tion architecture that supports on-demand product gen-

eration and easy import of external code (plug-in exe-

cutables). The solution is based on systematic naming

policy and smart chaining of the executables.

1 Motivation

Need of control. Typically, the design of a radar data

processing system is largely determined by an all-in-

one software package that handles "everything" from

the measurement tasks down to colourful products on

end-user screens. Such solutions are sometimes prob-

lematic because mostly there is a surrounding larger

system, "the main system", for which the radar data pro-

cessing system should serve more like a product gener-

ator module submitted to external control, requests and

data input.

On-demand product generation. Climatological

services as well as many research and development

tasks appreciate production systems in which products

based on older products can be retrieved. Because

the diversity of products available for operational me-

teorogical services is often large, it is not possible to

archive all the products. Practically, this suggests that

only raw data be archived and the system is build such

that any product can be (re-)generated on demand.

Operational implementation and interchange of

algorithms. In research and development stage, one

often carries out involved computations and other ex-

periments which are impossible with the operational

software. (This is actually logical, by the definition of

R&D.) Hence, this work gets done by programming ex-

perimental code and/or by applying research oriented

software such as statistical toolkits. Sooner or later in

international or in-house cooperation there is a need to

transfer the findings to an operational system. For ex-

ample in Europe, there are already many examples of

common efforts on sharing the development work in

radar algorithms [2] and technical processing [1].

Practically, one has three choices in transferring the

result – say, an algorithm – towards operational use:

Firstly, there is the literal approach: communicating a

result in a technical report or scientific publication – the

∗Corresponding address: Firstname.Lastname@fmi.fi

system owner or commercial manufacturer will even-

tually implement it in the software.1 Second, one may

consider code embedding: wrapping the original ad-hoc

executables in a technical form (interface) supported by

the operational system. Finally, a conformal approach:

the R&D work applies the tools and modules on which

also the operational system is based; this guarantees

compatibility but may decrease flexibility.

In this paper, we will focus on the embedding ap-

proach and the conformal approach.

2 Outline of the proposed system

2.1 General properties

Next, we explain the principles and technical build-

ing blocks of a system that meets the needs described

above. In fact, we wish to emphasize the involved ideas

and concepts rather than our implementations (a pro-

totype in PHP, another in Java). The amount of code

required to implement the proposed system is anyway

fairly small; the system could be implemented quickly

in any computer language supporting string parsing and

system calls (shell invocations). Further, many details

presented in this paper should be seen more as sugges-

tions of design rather than critical properties of the sys-

tem.

The main features of the proposed system are:

• The architecture is truly open, and supports user’s

extensions (plug-ins) developed in any language

capable of reading environment variables and sup-

porting file input-output.

• The system expects that it is possible and natural

to store any queried product as a file (rather than as

a database entry, for example); hence this system

does not fluently support querying single numbers

or strings.

• Product generators (scripts or binaries) are main-

tained in a systematically organized directory tree;

this structure by nature supports dividing human

work into teams (with own file permissions etc).

1This paper is an example of a literal approach aiming at transfer-

ring an "algorithm" to operational systems.

1

ERAD 2008 – THE FIFTH EUROPEAN CONFERENCE ON RADAR IN METEOROLOGY AND HYDROLOGY 3

1. The client issues the request.

2. The server parses (analyses) the request and de-

rives the product to be retrieved.

3. If the desired product file exists in the cache, the

system returns it to the user.

If not, the system tries to generate it by calling a

product generator, providing it with all the parsed

variables including (among others) a timestamp,

product parameters and target file path.

4. The plug-in tries to generate the desired file, pos-

sibly involving callbacks to the system for gener-

ating the products it needs as input, recursively. In

this sense, the system resembles makefiles applied

in program code compilation.

5. The plug-in stores the resulting file in a location

given by the main system. The execution returns

to the system.

6. The system checks if the plug-in has generated the

file. On success, it returns the file to the client.

On failure, communicates the diagnostics in a pre-

ferred way (eg. error message or log entry).

2.3 Variables

A product request is essentially a character string that

expresses the client’s need through a set of query vari-

ables. There are main variables which are always re-

quired or automatically derived by the system, as well

as product-specific variables.

The only compulsory main variable is the product id,

$PRODUCT. Another important main variable is the time,

given as $TIMESTAMP with format YYYYMMDDhhmm, by de-

fault the current time. (Static products like maps do

not require it.) As the system is based on creating, stor-

ing and transferring files, each product has some default

file format ($FORMAT). The product-specific variables or

product parameters can be supplied like the main vari-

ables.

For each query, the system does some parsing with

the variables. The parsing scheme is described in Fig.

2. The resulting set of variables uniquely define the

product (file) to be retrieved. Practically, this means

there are alternative, convenient ways to set variables.

For example, instead of using $TIMESTAMP, a user may

use (some of) variables $YEAR, $MONTH, $DAY, $HOUR, and

$MINUTE. Further, instead of giving a set of variables one

may always give just the desired filename, $FILE – the

system will derive the other variables from that. (This

feature is especially handy in http query mode, see Sec.

2.5.) Inversely, this requires the system to have a file-

name syntax capable of parsing $PRODUCT, $TIMESTAMP,

$FORMAT and product parameters from $FILE.

2.4 Product hierarchy

Instead of putting plug-ins to a common directory, it

is handy to set up a subdirectory for each plug-in

and its configuration files etc. Moreover, as groups

of related plug-ins tend to have common developer

groups, configuration files and other shared prop-

erties, it is wise to construct subdirectories hierar-

chically. Due to this "production management as-

pect", we recommend applying producer based direc-

tory hierarchy instead of hierarchies based on mea-

surement quantity (say, wind) or application (say,

www). For example, a product generator devel-

oped at FMI for computing a CAPPI image could

reside in a generator directory fi/fmi/radar/cappi.

The actual executable residing in the directory has a

standard filename, say generator.sh (in case of a

UNIX script), generator.php (PHP), generator.py

(Python) or Generator.class (Java), and so on. The

generator directory uniquely determines the respec-

tive product id $PRODUCT. We have preferred Java-

like convention, converting slashes to periods, yielding

$PRODUCT=fi.fmi.radar.cappi in the above example.

Whatever syntax applied, the critical property is that

given a product id, the system can uniquely determine

1) the cache directory eventually containing the file and

2) the directory of the generator that can (re-)generate

that product. Some examples of product names are

given in Table 1.

$PRODUCT Description

fi.fmi.radar.cappi FMI single-radar cappi

fi.fmi.radar.composite Composite image

nordrad.composite.max Nordic radar network,

maximum dbz composite

baltex.raw Radar data collected

in the Baltex research

project

baltrad.composite.q Quality field of the Baltic

area composite

Table 1: Examples of hypothetical product id’s.

ERAD 2008 – THE FIFTH EUROPEAN CONFERENCE ON RADAR IN METEOROLOGY AND HYDROLOGY 5

A unique description of a product — its filename:

200508091630_fi.fmi.radar.cappi_SITE=VAN_ALT=500.pgm.gz

Command line usage, user’s query:

> appserver -FILE 200508091630_fi.fmi.radar.cappi_SITE=VAN_ALT=500.pgm.gz

Command line usage, system response (the path of the succesfully generated product file:)

/data/cache/2005/08/09/fi/fmi/radar/cappi/200508091630_fi.fmi.radar.cappi_SITE=VAN_ALT=500.pgm.gz

Http usage, user’s query and the path of the succesfully generated product file:

http://products.fmi.fi/query/2005/08/09/fi/fmi/radar/cappi/200508091630_fi.fmi.radar.cappi_SITE=VAN_ALT=500.pgm.gz

Table 2: Examples of usage.

ical, biological, or medical data processing, for exam-

ple.

There are some visualization and other image pro-

cessing operations – like colouring, transparent lay-

ering, brightness and contrast control, zooming, ani-

mation of image series, format conversions – which

could be technically implemented in the product gen-

erators but more naturally as centralized services pro-

vided by the framework system, letting plug-ins con-

centrate more on computations requiring substantial ex-

pertise.

The proposed system suggests, or actually requires, a

proper file naming convention. Alternatively, one may

consider a service involving tens of unnamed radar im-

age products, and discussing “that radar image with

greenish precpitation” in phone. Anyway, we vote for

a systematic, unique, informative file naming conven-

tion. For reasons discussed above, we have preferred

the hierarchical, alphabetical Java-like convention (“an

inverted IP-hostname convention”). Nevertheless, one

may still criticize it for producing lengthy filenames.

Certainly, instead of the proposed convention one could

use numerical coding – like a running index or some-

thing like International Serial Book Numbers (ISBN) –

but such codes would be cryptic for human communi-

cation.

As an additional effect, the proposed naming con-

vention suits nicely to cataloging large sets of products

and search operations using pattern matching. One may

consider browsing an electronic catalogue containing

hundreds of products and picking wind-related products

with *.wind*, or picking all the raw data available in

an international network with *.radar*raw*. Also in

cache cleanup configuration one can apply similar tech-

niques combined with rules on creation times and/or ac-

cess times. Further, a system manager may appericiate

product dependency graphs supported by the proposed

system. For example, one may wish to know how many

products will be affected if certain intermediate plug-in

would not survive a system upgrade, for example.

Finally, above all, we would like to underline the

potential of the proposed system for international ex-

change of radar algorithms, visualizations and other re-

lated code snippets. Too much information remains on

literal form – just like this article perhaps – because

there is not too many open and flexible technical frame-

works for direct exchange of innovations.

Acknowledgement

This study has been supported by the Finnish Funding

Agency for Technology and Innovation (TEKES) within

AULA/PIPO project.

References

[1] Dawn Harrison, Robert Scovell, Huw Lewis, and

Stuart Matthews. The development of the EU-

METNET OPERA radar data hub. In Fourth Eu-

ropean Conference on Radar in Meteorology and

Hydrology (ERAD2006), pages 388–391. Coperni-

cus, September 2006.

[2] Elena Saltikoff, Uta Gjertsen, Daniel Michelson,

Iwan Holleman, Jörg Seltmann, Krista Odakivi,

Asko Huuskonen, Harri Hohti, Jarmo Koistinen,

Heikki Pohjola, and Günter Haase. Radar data qual-

ity issues in northern europe. In Third European

Conference on Radar Meteorology (ERAD04),

pages 212–215. Copernicus Gesellschaft, October

2004.

